Aloha :)
Du wendest die Kettenregel einmal an:$$f'(t)=\left(18e^{-\frac{(t-26)^2}{200}}+10\right)'=18\left(e^{-\frac{(t-26)^2}{200}}\right)'=18\,\underbrace{e^{-\frac{(t-26)^2}{200}}}_{\text{äußere Abl.}}\cdot\underbrace{\left(-\frac{(t-26)^2}{200}\right)'}_{\text{innere Abl.}}$$und du wendest die Kettenregel nochmal zur Bestimmung der innere Ableitung an:$$\phantom{f'(t)}=18\,e^{-\frac{(t-26)^2}{200}}\cdot\underbrace{\left(-\frac{2(t-26)}{200}\right)}_{\text{äußere Abl.}}\cdot\overbrace{\underbrace{(t-26)'}_{\text{innere Abl.}}}^{=1}=-\frac{9}{50}e^{-\frac{(t-26)^2}{200}}(t-26)$$