Diskrete Fourier-Transformation:
Sei v(t) ein endliches Zeitsignal für 0 ≤ t ≤ T, welches durch die N Werte { v (t0), v (t1), ..., v (tN−1) } abgetastet ist, mit \( ω = \frac{2π}{T} \) und \( t_j = j * \frac{T}{N} \) , dann ist die diskrete Fourier-Transformation an den diskreten Stellen m*ω (m = 0,..., N −1) gegeben durch das Skalarprodukt über den Ausgangsvektor \( \vec{v} \) und die konjugiert komplexe Einheitswurzel:
\( \hat{v}_{k}= \frac{T}{N}\sum \limits_{n=0}^{N-1} v_{n} e^{-i 2\pi \frac{nk}{N}} \)
in Matrixschreibweise für N=5 und \( w(n,k) = e^{-i 2\pi \frac{n*k}{5}} \) :
\( \hat{v} = \frac{1}{5}* \begin{pmatrix} 1 \\ 7 \\ 0 \\7 \\ 0 \end{pmatrix} * \begin{pmatrix} w(0,0) & w(1,0) & w(2,0) & w(3,0) & w(4,0) \\ w(0,1) & w(1,1) & w(2,1) & w(3,1) & w(4,1) \\ w(0,2) & w(1,2) & w(2,2) & w(3,2) & w(4,2) \\ w(0,3) & w(1,3) & w(2,3) & w(3,3) & w(4,3) \\ w(0,4) & w(1,4) & w(2,4) & w(3,4) & w(4,4) \end{pmatrix} \)
\( \hat{v}_{0} = \frac{1}{5}*(1*1 + 7*1 + 0*1 + 7*1 + 0*1 ) = 3 \)
\( \hat{v}_{1} = \frac{1}{5}*(1 + 7*e^{-i 2\pi \frac{1}{5}} + 7*e^{-i 2\pi \frac{3}{5}} ) \)
\( \hat{v}_{2} = \frac{1}{5}*(1 + 7*e^{-i 2\pi \frac{2}{5}} + 7*e^{-i 2\pi \frac{6}{5}} ) \)
\( \hat{v}_{3} = \frac{1}{5}*(1 + 7*e^{-i 2\pi \frac{3}{5}} + 7*e^{-i 2\pi \frac{9}{5}} ) \)
\( \hat{v}_{4} = \frac{1}{5}*(1 + 7*e^{-i 2\pi \frac{4}{5}} + 7*e^{-i 2\pi \frac{12}{5}} ) \)