Aloha :)
Der Binomialkoeffizieten \(\binom{n}{k}\) gibt die Anzahl der Möglichkeiten an, aus \(n\) Objekten genau \(k\) Objekte ohne Zurücklegen auszuwählen.
Jetzt geben wir zu den \(n\) Objekten ein weiteres hinzu und wollen daraus genau \(k\) Objekte auswählen. Wir wollen also wissen, was \(\binom{n+1}{k}\) ist.
Dazu unterscheiden wir 2 Fälle:
1) Das neu hinzugegebene Objekt wird ausgewählt, dann müssen aus den alten \(n\) Objekten noch genau \((k-1)\) ausgewählt werden. Dafür gibt es \(\binom{n}{k-1}\) Möglichkeiten.
2) Das neu hinzugegebene Objekt wird nicht ausgewählt, dann müssen aus den alten \(n\) Objekten noch genau \(k\) ausgewählt werden. Dafür gibt es \(\binom{n}{k}\) Möglichkeiten.
Zusammengefasst heißt das:$$\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$$