0 Daumen
168 Aufrufe

Aufgabe: Wenn g ◦ f injektiv ist, so sind auch g und f injektiv.


Problem/Ansatz: Mein Versuch war es über Komposition und Umschreiben zu beweisen, aber damit zeige ich doch nur, dass f injektiv ist oder?

Text erkannt:

\( f: A \rightarrow B \)
\( g: B \rightarrow C \)
fog: \( A \rightarrow C \) (iejettis)
\( L_{>} f 8 g \) injehrio
\( f(a)=f\left(a^{\prime}\right) \)
\( g(f(a))=g(f(a)) \)
\( g \circ f(a)=g \circ f\left(a^{\prime}\right) \)
\( g \circ f=i n j e l t i v \)
\( a=a \)

Avatar von

1 Antwort

0 Daumen

Korrekt, g muss auch nicht injektiv sein. Als Beispiel: f: {1} →{1,2}, f(1)=1 und g: {1,2} →{1}, g(1)=g(2)=1. Nun ist g nicht injektiv, f ist aber injektiv. Nun ist g ° f: {1} → {1}, (g ° f)(1)= g(f(1) = g(1) = 1. g ° f ist also injektiv, obwohl g nicht injektiv ist. Die Aussage in der Aufgabenstellung ist also nicht wahr. "Wenn g ° f injektiv ist, so ist auch f injektiv" stimmt allerdings.

Avatar von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community