Aufagbe: Bestimme, welche Funktionen Unterringe vder stetigen Funktionen sind.
1. \( \left\{a_{0}+\sum \limits_{k=1}^{n} a_{k} \cos (k x) \mid n \in \mathbb{N}, a_{i} \in \mathbb{R}\right\} \)
2. \( \left\{b_{0}+\sum \limits_{k=1}^{n} b_{k} \sin (k x) \mid n \in \mathbb{N}, b_{i} \in \mathbb{R}\right\} \)
Mein Problem: Ich weiß nicht ganz, wieso ein Unterschied zwischen den beiden sein sollte. Die 2. gibt aber in der Bewertung auf dem Übungsblatt einen Punkt mehr, muss also irgendwie schwerer sein.
Habe auch nur die grobe Definition von einer stetigen Funktion, falls das relevant ist, hab leider dieses Semester erst mit Analysis angefangen, kann also gut sein, das ich einfach etwas übersehe oder mich irgendwo verrechnet hab.
Wäre dankbar für eine grobe Richtung, wieso da ein Unterschied ist ^^