\( e^{2 \ln (\sqrt{x})} \cdot \frac{1}{x^{-1}}-\frac{(x y)^{2}}{\left(x^{\frac{1}{4}}\right)^{8}} \)
\(= e^{2 \ln (\sqrt{x})} \cdot \frac{1}{x^{-1}}-\frac{(x y)^{2}}{x^2} \)
\(= e^{2 \ln (\sqrt{x})} \cdot x-\frac{x^2 y^{2}}{x^2} \)
\(= e^{ \ln (\sqrt{x^2})} \cdot x-y^{2} \)
\(= e^{ \ln (x)} \cdot x-y^{2} \)
\(= x \cdot x-y^{2} = x^2 - y^2\)