Symmetrische Matrizen haben bekannterweise(?) relle EW:
https://www.geogebra.org/m/BpqJ28eP#material/upUZg79r
A:= {{-1,0,0,-2 ί },{0,-1,2 ί ,0},{0,-2 ί ,-1,0},{2 ί ,0,0,-1}}
|A - λ id| = \(\small \left(\lambda - 1 \right)^{2} \; \left(\lambda + 3 \right)^{2} = 0\)
\(\small \left(\begin{array}{rrrr}\lambda=&-3&\left(\begin{array}{rrrr}2&0&0&-2 \; i\\0&2&2 \; i&0\\0&-2 \; i&2&0\\2 \; i&0&0&2\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\lambda=&1&\left(\begin{array}{rrrr}-2&0&0&-2 \; i\\0&-2&2 \; i&0\\0&-2 \; i&-2&0\\2 \; i&0&0&-2\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\end{array}\right)\)
\(\small \left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = \left(\begin{array}{rr}i \; x4&-i \; x4\\-i \; x3&i \; x3\\x3&x3\\x4&x4\\\end{array}\right)\)
\(\small S \, := \, \left(\begin{array}{rrrr}\frac{i}{\sqrt{2}}&0&0&\frac{-i}{\sqrt{2}}\\0&\frac{-i}{\sqrt{2}}&\frac{i}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0\\\frac{1}{\sqrt{2}}&0&0&\frac{1}{\sqrt{2}}\\\end{array}\right)\)