Aloha :)
Wir formen uns die Flugbahn des Balles zunächst etwas um:$$f(x)=-0,01x^2+0,04x+2,52=-\frac{1}{100}(x^2-4x\pink{-252})=-\frac{1}{100}(\,(x^2-4x\pink{+4})\pink{-256})$$$$\phantom{f(x)}=-\frac{1}{100}(\,(x-2)^2-256)=-\frac{1}{100}(x-2)^2+\frac{256}{100}=\underline{\underline{2,56-\frac{(x-2)^2}{100}}}$$
a) Berechne die Höhe des Balls beim Aufschlag
$$f(0)=2,56-\frac{(0-2)^2}{100}=2,56-0,04=2,52$$
b) Berechne die Höhe des Balls nach 2 m
$$f(0)=2,56-\frac{(2-2)^2}{100}=2,56$$
c) Berechne nach welcher Entfernung der Ball 2,40m hoch fliegt.
$$f(x)\stackrel!=2,40\quad\big|\text{Funktionsterm einsetzen}$$$$2,56-\frac{(x-2)^2}{100}=2,40\quad\bigg|-2,56$$$$-\frac{(x-2)^2}{100}=-0,16\quad\bigg|\cdot(-100)$$$$(x-2)^2=16\quad\big|\sqrt{\cdots}$$$$x-2=\pm4\quad\big|+2$$$$x=\pm4+2=\left\{\begin{array}{r}+6\\-2\end{array}\right.$$Da der Ball in \(x\)-Richtung geschlagen wird, machen negative Werte für \(x\) keinen Sinn. Daher fällt die Lösung \((-2)\) weg. Übrig bleibt:$$x=6$$
d) Berechne wo der Ball auf dem Boden aufkommt
$$f(x)\stackrel!=0\quad\big|\text{Funktionsterm einsetzen}$$$$2,56-\frac{(x-2)^2}{100}=0\quad\bigg|+\frac{(x-2)^2}{100}$$$$2,56=\frac{(x-2)^2}{100}\quad\big|\cdot100$$$$(x-2)^2=256\quad\big|\sqrt{\cdots}$$$$x-2=\pm16\quad\big|+2$$$$x=\pm16+2=\left\{\begin{array}{r}+18\\-14\end{array}\right.$$Wir sind wieder nur an der positiven Lösung interessiert. Also ist der Auftraffpunkt$$x=18$$
e) Berechne die maximale Flughöhe des Balls
Hier haben wir nicht mehr viel zu rechnen, denn \((x-2)^2\) ist als Quadratzahl immer \(\ge0\) und \(=0\) genau dann, wenn \(x=2\) ist. Daher hat der Ball am Punkt \((2|2,56)\) seine maximale Höhe erreicht.