Aufgabe:
Gegeben seien die Vektoren a und \( \mathbf{b} \) aus dem Vektorraum \( \mathbb{R}^{3} \) und die folgende \( 3 \times 3 \) Matrix \( A \) mit Komponenten aus \( \mathbb{R} \) mit
\( \mathbf{a}=\left(\begin{array}{c} 2 \\ -2 \\ 2 \end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c} 4 \\ 1 \\ -5 \end{array}\right) \quad A=\left(\begin{array}{ccc} 2 & 3 & 1 \\ 5 & 3 & -2 \\ -4 & -5 & -1 \end{array}\right) \)
Die lineare Abbildung \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) sei definiert durch \( f(\mathbf{v})=A \cdot \mathbf{v} \).
a) Berechnen Sie \( f(\mathbf{a}) \) und \( f(\mathbf{b}) \). Liegt einer der beiden Vektoren \( \mathbf{a}, \mathbf{b} \) im Kern von \( f ? \)
b) Prüfen Sie, ob die Abbildung injektiv ist.
c) Bestimmen Sie die Dimension des Kerns und des Bildes der linearen Abbildung \( f \).
d) Geben Sie eine Basis des Kerns von \( f \) an.
Problem/Ansatz: