\(K_n=K_0*(1+ \frac{p}{100})^{n}\)
\((1+ \frac{p}{100})^{n}=\frac{K_n}{K_0}\)
\(n*ln(1+ \frac{p}{100})=ln(\frac{K_n}{K_0})\)
\(n=\frac{ln(\frac{K_n}{K_0})}{ln(1+ \frac{p}{100})}\)
\(n=\frac{ln(\frac{1200}{1000})}{ln(1+ \frac{3}{100})}\)
\(n≈6,168 Jahre\)