Ist die Menge der monoton wachsenden Abbildungen von ℝ nach ℝ ein Untervektorraum im Vektorraum aller Abbildungen von ℝ nach ℝ?
Meine Antwort war "Ja", da ja die Abbildung f(x) = 0 als Nullelement enthalten ist (Voraussetzung ist ja nur monoton und nicht streng monoton), da monoton wachsende Abbildungen addiert auch wieder monoton wachsend sind und somit Abgeschlossenheit bezüglich der Addition herrscht und da auch die Multiplikation von zweier solcher Abbildungen wieder monoton wachsend ist.
Aber die Antwort scheint "Nein" zu sein, wieso?