Um die Wahrscheinlichkeitsverteilung für die Anzahl der Spiele zu bestimmen, kann man folgende Fälle betrachten:
1. \(LJLJ \ldots LJLL\), also 2(m-1) abwechselnde Siege von L und J und L und J....; dann ein finaler Doppelsieg von L. Anzahl der Spiele: 2m. Wkt:\((2/9)^{m-1}(4/9)\)
2. 1. \(LJLJ \ldots LJJ\), also 2m abwechselnde Siege; dann ein finaler Sie von J. Anzahl der Spiele: 2m+1. Wkt:\((2/9)^{m}(1/3)\)
3. \(JLJL \ldots JLJJ\), also 2(m-1) abwechselnde Siege; dann ein finaler Doppelsieg von J. Anzahl der Spiele: 2m. Wkt:\((2/9)^{m-1}(1/9)\)
4. \(JLJL \ldots JLL\), also 2m abwechselnde Siege; dann ein finaler Sieg von L. Anzahl der Spiele: 2m+1. Wkt:\((2/9)^{m-1}(2/3)\)
Also ist die Wkt für 2m Spiele \((2/9)^{m-1}(5/9)\) und für 2m+1 Spiele: \((2/9)^m\)