\(\begin{aligned} f(x,y) & =f(x,0)+\frac{f(x,y)-f(x,0)}{y}\cdot y\\ f(x+y,0) & =f(x,0)+\frac{f(x+y,0)-f(x,0)}{y}\cdot y \end{aligned}\)
Wegen \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}\) ist \(\frac{f(x,y)-f(x,0)}{y} = \frac{f(x+y,0)-f(x,0)}{y}\)