Ich brauche hilfe von b) - f)
Die Parabel p verlâuft durch die Punkte \( P(-2 \mid 2,8) \) und \( Q(7 \mid 1) \), Sie hat eine Gleichung der Form \( y=-0,2 x^{2}+b x+c \) mit \( G=\mathbb{R} \times \mathbb{R} \) und \( b, c \in \mathbb{R} \).
Die Gerade \( g \) hat die Gleichung \( y=-0,2 x-1 \) mit \( G=\mathbb{R} \times \mathbb{R} \).
Runden Sie im Folgenden aul zwei Stellen nach dem Komma.
a) Zeigen Sie durch Berechnung der Werte für b und \( c \), dass die Parabel \( p \) die Gleichung \( y=-0,2 x^{2}+0,8 x+5,2 \) hat.
Zeichnen Sie sodann die Parabel \( p \) und die Gerade \( g \) für \( x \in[-4 ; 9] \) in ein Koordinatensystem ein.
Für die Zeichnung: Längeneinheit \( 1 \mathrm{~cm} ;-4 \leqq x \leqq 9 ;-4 \leqq y \leqq 7
b) Punkte \( A_{n}\left(x \mid-0,2 x^{2}+0,8 x+5,2\right) \) auf der Parabel \( p \) und Punkte \( B_{n}(x \mid-0,2 x-1) \) auf der Geraden \( g \) haben dieselbe Abszisse \( x \). Punkte \( D_{n} \) liegen auch aul der Parabel \( p \) und haben eine um drei größere Abszisse als die Punkte \( A_{n} \). Zusammen mit Punkten \( C_{n} \) entstehen für \( \left.x \in\right]-3,60 ; 8,60\left[\right. \) Trapeze \( A_{n} B_{n} C_{n} D_{n} \).
Es gilt: \( \left[A_{n} B_{n}\right] \|\left[C_{n} D_{n}\right] \) und \( \overline{C_{n} D_{n}}=4 \) LE.
Zeichnen Sie die Trapeze \( A_{1} B_{1} C_{1} D_{1} \) für \( x=-1 \) und \( A_{2} B_{2} C_{2} D_{2} \) für \( x=3 \) in das Koordinatensystem zu B 1.1 ein.
c) Zeigen Sie, dass für den Flächeninhalt der Trapeze \( A_{n} B_{n} C_{n} D_{n} \) in Abhängigkeit von der Abszisse \( x \) der Punkte \( A_{n} \) gilt: \( A(x)=\left(-0,3 x^{2}+1,5 x+15,3\right) F E \).
Bestimmen Sie sodann den maximalen Flächeninhalt dieser Trapeze sowie den zugehörigen Wert für \( x \).
d) Der Flächeninhalt der Trapeze \( \mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \) und \( \mathrm{A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{D}_{4} \) beträgt jeweils \( 16,5 \mathrm{FE} \). Ermitteln Sie die zugehörigen Werte für \( x \).
e) Zeigen Sie rechnerisch, dass für die \( y \)-Koordinate der Punkte \( D_{n} \) in Abhängigkeit von der Abszisse \( x \) der Punkte \( A_{n} \) gilt: \( y_{D_{n}}=-0,2 x^{2}-0,4 x+5,8 \).
f) Die Strecke \( \left[A_{5} D_{5}\right] \) im Trapez \( A_{5} B_{5} C_{5} D_{5} \) ist parallel zur \( x \)-Achse.
Berechnen Sie den Flächeninhalt dieses Trapezes.
\( \left[\right. \) Zwischenergebnis: \( \left.x_{A_{5}}=0,5\right] \)
Ich brauche hilfe von b) - f)