Die Funktion zu \(f(x) = ax^3+bx^2+ex+d\) hat bei \(x = \frac{1}{2} \) eine Nullstelle und eine Wendestelle. Die Gleichung der Tangente an den Graphen von f im Punkt \(P(2|0)\) ist \(g(x) = 9x-18\)
\(f(x)=a*[(x- \frac{1}{2})*(x-2)*(x-N)]\)
\(f´(x)=a*[(x-2)*(x-N)+(x- \frac{1}{2})*(x-N)+(x- \frac{1}{2})*(x-2)]\)
\(f´(2)=a*[(2-2)*(2-N)+(2- \frac{1}{2})*(2-N)+(x- \frac{1}{2})*(2-2)]\)
\(f´(2)=1,5a*(2-N)=9\) → \(a=\frac{6}{2-N}\)
\(f´(x)=\frac{6}{2-N}*[(x-2)*(x-N)+(x- \frac{1}{2})*(x-N)+(x- \frac{1}{2})*(x-2)]\)
\(f´´(x)\\=\frac{6}{2-N}*[(x-N)+(x-2)+(x-N)+(x- \frac{1}{2})+(x-2)+(x- \frac{1}{2})]\)
\(f´´(\frac{1}{2})\\=\frac{6}{2-N}*[(\frac{1}{2}-N)+(\frac{1}{2}-2)+(\frac{1}{2}-N)+(\frac{1}{2}- \frac{1}{2})+(\frac{1}{2}-2)+(\frac{1}{2}- \frac{1}{2})]\)
\(f´´(\frac{1}{2})=\frac{6}{2-N}*[(\frac{1}{2}-N)-1,5+(\frac{1}{2}-N)-1,5)]\)
\(f´´(\frac{1}{2})=\frac{6}{2-N}*[(1-2N)-3)]\)
\(f´´(\frac{1}{2})=\frac{6}{2-N}*[-2N-2)]\)
\(\frac{6}{2-N}*[-2N-2)]=0\) →\(N=-1\) \(a=\frac{6}{2+1}=2\)
\(f(x)=2*(x- \frac{1}{2})*(x-2)*(x+1)\)