Aloha :)
Die Dichte des Drahtes ist:$$\delta(x)=5+\sin x\quad;\quad 0\le x\le\frac{3\pi}{4}$$
Daraus bestimmen wir seine Masse:$$\small m=\int\limits_0^{\frac{3\pi}{4}}\delta(x)\,dx=\int\limits_0^{\frac{3\pi}{4}}(5+\sin x)\,dx=\left[5x-\cos x\right]_0^{\frac{3\pi}{4}}=\left(\frac{15\pi}{4}+\frac{1}{\sqrt2}\right)+1\approx13,4881$$
Mit Hilfe der Masse können wir den Schwerpunkt berechnen:$$x_s=\frac{1}{m}\int\limits_0^{\frac{3\pi}{4}}x\delta(x)\,dx=\frac{1}{m}\int\limits_0^{\frac{3\pi}{4}}\left(5x+x\sin x\right)dx=\frac1m\left[\frac{5x^2}{2}+\sin x-x\cos x\right]_0^{\frac{3\pi}{4}}$$Alles einsetzen und ausrechnen ergbit:\(\quad \pink{x_s\approx1,2049}\)