Sei \( L / K \) eine Körpererweiterung, \( a \in L \) ein Element und \( p=\operatorname{char}(K) \) eine Primzahl. Zeigen Sie, dass \( a \) genau dann separabel über \( K \) ist, wenn \( K(a)= \) \( K\left(a^{p}\right) \) ist.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos