⚠️ Diese Frage wird gelöscht.
Nachfragen zu einer Aufgabe immer als Kommentar bei der ursprünglichen Aufgabe.
0 Daumen
237 Aufrufe

Sei \( L / K \) eine Körpererweiterung, \( a \in L \) ein Element und \( p=\operatorname{char}(K) \) eine Primzahl. Zeigen Sie, dass \( a \) genau dann separabel über \( K \) ist, wenn \( K(a)= \) \( K\left(a^{p}\right) \) ist.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community