Aloha :)
Die Abbildung \(f\colon V\to W\) sei \(K\)-linear, d.h.:$$(1)\;\;f(a+b)=f(a)+f(b)\quad;\quad\forall a,b\in V$$$$(2)\;\;f(\lambda a)=\lambda f(a)\quad;\quad\forall a\in V\;,\;\forall \lambda\in K$$Bei jeder linearen Abbildung wird die \(0\) auf die \(0\) abgebildet, denn$$f(0)=f(0\cdot a)=0\cdot f(a)=0$$
Wir zeigen: \(\pink{\text{\(f\) injektiv} \Longleftrightarrow\text{Kern\((f)=\{0\}\)}}\)
"\(\implies\)" \(f\) sei injektiv. Wir nehmen an, es gibt ein \(a\in V^{\ne0}\) mit \(f(a)=0\):$$\quad\qquad f(a)=0\,\land\,f(0)=0\implies f(a)=f(0)\stackrel{f\text{ inj.}}{\implies} a=0\quad\setminus\!\!\!\!/\;\;\text{Widerspruch}$$\(\quad\qquad\)Der Kern besteht also nur aus der \(0\).
"\(\;\Longleftarrow\;\)" Annahme: Kern\((f)=\{0\}\), d.h. nur die \(0\in V\) wird auf die \(0\in W\) abgebildet.
\(\quad\qquad\)Seien \(a,b\in V\) mit \(f(a)=f(b)\), dann gilt wegen der Linearität:$$\quad\qquad f(a)=f(b)\implies0=f(a)-f(b)=f(a-b)\implies (a-b)\in\text{Kern}(f)$$$$\quad\qquad\implies (a-b)=0\implies a=b$$\(\quad\qquad\)Weil der Kern ausschließlich die \(0\) enthält, ist \(f\) also injektiv.
Die Antwort auf deine zweite Frage liefert die Negation der pinken Aussage:
\(\pink{\text{\(f\) nicht injektiv} \Longleftrightarrow\text{Kern\((f)\ne\{0\}\)}}\)