0 Daumen
383 Aufrufe

Aufgabe:

IMG_1963.jpeg

Text erkannt:

7. Babynahrung wird nach dem Abfüllen durch Hitze sterilisiert. Dabei halbiert sich die Anzahl der lebenden Keime alle \( t_{h} \) Minuten, wobei \( t_{h} \) die Halbwertszeit bezeichnet. Diese hängt hauptsächlich von der Temperatur des Sterilisationsofens ab.
(a) (7P) Für einen neuen Ofen wird die Halbwertszeit dadurch bestimmt, dass alle 10 Minuten die Anzahl der überlebenden Keime in einer Probe gemessen wird. Sie beträgt
\begin{tabular}{r|c|c|c|c|c}
Zeit & \( 0 \mathrm{Min} \) & \( 10 \mathrm{Min} \) & \( 20 \mathrm{Min} \) & \( 30 \mathrm{Min} \) & \( 40 \mathrm{Min} \) \\
\hline verbliebene Keime & 12200 & 7110 & 4020 & 2040 & 1510
\end{tabular}
Verwenden Sie Regression im exponentiellen Modell, um die Halbwertszeit zu bestimmen.

Hinweis: Geben Sie die Ergebnisse mit mindestens vier Stellen Genauigkeit an!
(b) (2P) Für einen anderen Ofen ist bekannt, dass sich die Anzahl der verbliebenen Keime in zwei Stunden achtelt. Bestimmen Sie seine Halbwertszeit.


Ich würde gerne ein ausführlichen Rechenweg mit Teilschritten zu dieser Aufgabe haben um es mit meinem zu vergleichen. :)

Vielen Dank im Voraus

Avatar von

http://www.acdca.ac.at/material/bsp/d0414_wachstum5.pdf

zum Vergleich ohne Regression:

f(x) = a*b^x

f(x) = 12200*a^x

a bestimmen:

12200*a^40 = 1540

a= (1540/12200)^(1/40) = 0,949574...

HWZ:

0,5= a^t

t= ln0,5/lna = 13, 3964 min

3 Antworten

+1 Daumen
 
Beste Antwort

a)

Ich erhalte nach dem exponentiellen Modell die Funktion

У = 11956.76131666 * 0.9471743922965^x

Halbwertszeit

0.9471743922965^x = 0.5 --> x = 12.77171535 Minuten

Stimmt das mit deiner Lösung überein?

b)

2 Stunden = 120 Minuten == 1/8 (3 Halbwertszeiten)

40 Minuten == 1/2 (1 Halbwertszeit)

Avatar von 489 k 🚀
0 Daumen

b)

g(x) = a*b^x

a:

1/8 = a^2

a= (1/8)^(1/2) = 0,353553...

HWZ:

0,5= a^t

t= ln0,5/lna = 0,6666.. = 2/3h = 40 min

Avatar von 39 k
0 Daumen
dass sich die Anzahl der verbliebenen Keime in zwei Stunden achtelt. Bestimmen Sie seine Halbwertszeit.

Wenn sie sich in 120 Minuten achtelt, dann tut sie sich in diesem Zeitraum dreimal halbieren...

Avatar von 46 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community