ich hänge seit längerem an folgender Aufgabe:
Es sei
$$((X_k))_{k \in \mathbb{N}}$$ ein Folge unabhängiger Zufallsvariablen auf einem Wahrscheinlichkeitsraum $$( \Omega,A,P)$$ mit $$X_k \sim Exp(\sqrt(k))$$
Bestimmen Sie den Erwartungswert und die Varianz einer $$ Exp (\lambda)$$ verteilten Zufallsvariable (die Dichte ist gegeben durch $$f(x)=\lambda e^{- \lambda x} \mathbb{1}_{[0, \infty)} (x))$$ und zeigen Sie, dass
$$\frac{1}{n} \sum_{k=1}^n {X_k}\longrightarrow 0 - f.s. ,\quad für \quad n \rightarrow \infty$$
Erwartungswert und Varianz sind kein Problem. Mir geht es um die fast sichere Konvergenz. Ich kenne für fast sichere Konvergenz neben der Definition nur das Starke Gesetz der großen Zahlen und Borel Cantelli.
Beim starken Gesetz der großen Zahlen ist ja gefordert, dass $$X_1, \ldots , X_n$$ unhabhängig, identisch verteilt, was hier aber nicht gegeben ist.
Bei Borel Cantelli müsste ich ja zeigen, dass $$ \sum_{n=0}^{\infty} P(\{|\frac{1}{n} \sum_{k=1}^nX_k-0|\geq \epsilon\})<\infty$$
Damit komme ich aber leider auch kein Stück weiter.
Wäre für jede Hilfe dankbar.
LG
Micha