|2·x^2 - 18| ≤ - 12·x + 14
Fall 1: 2·x^2 - 18 ≥ 0 --> x ≤ -3 ∨ x ≥ 3
2·x^2 - 18 ≤ - 12·x + 14
2·x^2 + 12·x - 32 ≤ 0 --> -8 ≤ x ≤ 2 --> -8 ≤ x ≤ -3
Fall 2: 2·x^2 - 18 ≤ 0 → -3 ≤ x ≤ 3
-(2·x^2 - 18) ≤ - 12·x + 14
-2·x^2 + 18 ≤ - 12·x + 14
-2·x^2 + 12·x + 4 ≤ 0 --> x ≤ 3 - √11 (-0.32) ∨ x ≥ √11 + 3 (6.32) --> -3 ≤ x ≤ 3 - √11
Jetzt noch die Teillösungen zusammenfassen
-8 ≤ x ≤ 3 - √11