Aloha :)
Wegen \((a,c\ne0)\) können wir den Funktionsterm wie folgt umformen:$$f(x)=\frac{ax+b}{cx+d}=\frac{a\left(x+\frac ba\right)}{c\left(x+\frac dc\right)}=\frac ac\cdot\frac{x+\frac ba}{x+\frac dc}=\frac ac\cdot\frac{\left(x\pink{+\frac dc}\right)+\frac ba\pink{-\frac dc}}{x+\frac dc}$$$$\phantom{f(x)}=\frac ac\left(1+\frac{\frac ba-\frac dc}{x+\frac dc}\right)=\frac ac\left(1+\frac{\frac{bc-ad}{ac}}{x+\frac dc}\right)\color{blue}=\frac ac\left(1-\frac{ad-bc}{ac\,x+ad}\right)$$Wegen \((ad-bc\ne0)\) ist der Zähler von Null verschieden, sodass \(f(x)\ne\frac ac\) gilt.
zu 1) Definitionsbereich
Kritsich ist hier eine mögliche Division durch Null. Wir müssen also den Fall \((xc+d=0)\) oder umgeformt den Fall \((x=-\frac dc)\) ausschließen:$$D=\mathbb R\setminus\left\{-\frac dc\right\}$$
zu 2) Injektivität
Eine Funktion ist injektiv, wenn jedes Element der Zielmenge höchstens 1-mal getroffen wird. Wir nehmen daher an, ein Funktionswert wird zwei Mal getroffen und zeigen, dass dies nur dann der Fall ist, wenn die Argumente der Funktion gleich sind.
$$f(x)=f(y)\implies\frac ac\left(1-\frac{ad-bc}{ac\,x+ad}\right)=\frac ac\left(1-\frac{ad-bc}{ac\,y+ad}\right)$$$$\phantom{f(x)=f(y)}\stackrel{\cdot\frac ca}{\implies}1-\frac{ad-bc}{ac\,x+ad}=1-\frac{ad-bc}{ac\,y+ad}$$$$\phantom{f(x)=f(y)}\stackrel{-1}{\implies}-\frac{ad-bc}{ac\,x+ad}=-\frac{ad-bc}{ac\,y+ad}\stackrel{\cdot(-1)}{\implies}\frac{ad-bc}{ac\,x+ad}=\frac{ad-bc}{ac\,y+ad}$$$$\phantom{f(x)=f(y)}\!\!\!\!\stackrel{\text{(Kehrwerte)}}{\implies}\frac{ac\,x+ad}{ad-bc}=\frac{ac\,y+ad}{ad-bc}\stackrel{\cdot(ad-bc)}{\implies}ac\,x+ad=ac\,y+ad$$$$\phantom{f(x)=f(y)}\stackrel{-ad}{\implies}ac\,x=ac\,y\stackrel{\div(ac)}{\implies}x=y$$
Die Funktion ist also injektiv\(\quad\checkmark\)
zu 3) Surjektivität
Eine Funktion ist surjektiv, wenn jedes Element der Zielmenge mindestens 1-mal getroffen wird. Da hier keine Zielmenge angegeben ist, können wir über die Surjektivität keine gesicherte Aussage treffen.
Gehen wir davon aus, dass ganz \(\mathbb R\) als Zielmenge gemeint ist, wäre die Funktion nicht surjektiv, denn wir haben ja oben bereits festgestellt, dass \(f(x)\ne\frac ac\) ist.