Aufgabe:
Auch die Menge N^3 der Zahlentripel über den natürlichen Zahlen ist gleich groß, d.h.: sie ist abzählbar
unendlich. Um diese Behauptung zu beweisen, sollen Sie eine Aufzählung der Elemente von N^3 skizzieren.
Zwecks Nachvollziehbarkeit der Aufzählung, sollten Sie bei dieser Aufzählung die Zahlentripel in Gruppen
gliedern. Geben Sie für jede Gruppe auch die Anzahl der Elemente in dieser Gruppe sowie die Positionen,
die die Elemente der Gruppe in der Aufzählung einnehmen, an.
Als Bsp in den Unterlagen ist
"Idee: für M = N × N:
Aufzählung (Cantor’sches Abzählprinzip):
(0,0),
(1,0), (1,1), (0,1),
(2,0), (2,1), (2,2), (1,2), (0,2)
(3,0), (3,1), (3,2), (3,3), (2,3), (1,3), (0,3),
etc."
Problem/Ansatz:
Ich hab probiert die Gruppe soll einfach die Summe aller Werte im Tripel und deshalb eindeutig dann sein.
Nur habe ich Probleme die Anzahl einer beliebigen Summe zu definiere bzw. die Position.
Gebe es eine andere Möglichkeit außer der Summe des Tripels. Eine einfachere wie o.a für die Tupel N^2