+1 Daumen
833 Aufrufe
Untersuchen sie die folgende Funktion auf Monotonie und Krümmung im Intervall (0,5).Geben Sie alle Extrem- und Wendestellen an. In welchen Bereichen ist die Funktion beschleunigt wachsendbzw. beschleunigt fallend?

f(x) = – x^3 + 5x^2 – 3x + 10

Brauche hilfe!!
Avatar von

1 Antwort

0 Daumen

f(x) = - x^3 + 5·x^2 - 3·x + 10
f'(x) = - 3·x^2 + 10·x - 3
f''(x) = 10 - 6·x

 

Extrempunkte f'(x) = 0

- 3·x^2 + 10·x - 3 = 0
x = 1/3 ∨ x = 3

f(1/3) = 257/27 = 9.52 --> Tiefpunk
f(3) = 19 --> Hochpunkt

 

Wendepunkte f''(x) = 0

10 - 6·x = 0
x = 5/3

f(5/3) = 385/27 = 14.26

 

Skizze:

 

Du solltest mit meinen Rechnungen und der Skizze jetzt alle Fragen selbständig beantworten können.

Beachte: Meine Rechnungen beantworten noch nicht alleine die Fragestellungen.

Avatar von 487 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community