Aloha :)
Die Fall-Geschwindigkeit ist uns bekannt:$$v(t)=50-50e^{-0,2\,t}$$
zu a) Die gefallene Strecke \(s(t)\) zum Zeitpunkt \(t\ge0\) ist:$$\pink{s(t)=}\int\limits_0^tv(\tau)\,d\tau=\int\limits_0^t\left(50-50e^{-0,2\tau}\right)d\tau=\left[50\tau-\frac{50e^{-0,2\tau}}{-0,2}\right]_{0}^t$$$$\phantom{s(t)}=\left[50\tau+250e^{-0,2\tau}\right]_{0}^t=\left(50t+250e^{-0,2t}\right)-(0+250)$$$$\phantom{s(t)}=\pink{50t+250e^{-0,2t}-250}$$
Nach \(t=10\,\mathrm s\) ist der Fallschirmspringer \(s(t=10)\approx283,83\,\mathrm m\) gefallen.
zu b) Um die Höhe \(h(t)\) zum Zeitpunkt \(t\) zu erhalten, subtrahieren wir die gefallene Strecke \(s(t)\) von der Anfangshöhe:$$\pink{h(t)=}4000-s(t)=\pink{4250-\left(50t+250e^{-0,2t}\right)}$$
zu c) Für die Zeit \(T\) zum Ziehen der Reißleine bei \(1000\,\mathrm m\) Höhe gilt:$$h(T)=1000\quad\big|\text{Funktionsterim einsetzen}$$$$4250-\left(50T+250e^{-0,2T}\right)=1000\quad\big|\colon(-50)$$$$-85+\left(T+50e^{-0,2T}\right)=-20\quad\big|+85$$$$T+50e^{-0,2T}=65$$
Da die Expontentialfunktion \(e^{-0,2\,T}\) einen negativen Exponenten hat, ist sie kleiner als \(1\). Für große \(T\)-Werte dominiert im Term \((T+50e^{-0,2T})\) der lineare Anteil \(T\) immer mehr. Wir können daher den Exponential-Term vernachlässigen und die Fallzeit bis zum Öffnen des Schirms näherungsweise direkt ablesen:$$\pink{T\approx65\,\mathrm s}$$