Vielen Dank. In der Aufgabe steht "Zeige". Ich habe reflexiv mit transitiv verwechselt, ich meinte reflexiv.
Für Reflexivität wollte ich folgendermaßen schreiben: {(a, a) ∈ N x N | ∃ n ∈ N : a = a * n}, aRa gilt genau dann, wenn n = 1.
Nun stelle ich mir Fragen zur Transitivität. Wenn aRb und bRc gelten, muss aRc gelten. Nehmen wir an, a = 4, b = 2, c = 1. Dann haben wir 4R2 mit n = 2 (aRb); 2R1 mit n = 2 (bRc); 4R1 mit n = 4, also aRc. Ich frage mich, ob ich einfach n ändern kann. Falls ja, ist R transitiv.
Dies ist kein Beweis, den ich abgeben würde, ich möchte es nur für mich selbst klären.