Aufgabe:
Sei \(\mathcal{V}\) ein normierter Vektorraum und \(G \subseteq \mathcal{V}\) ein Gebiet. Zeige, dass \(G\) wegzusammenhängend ist.
Problem/Ansatz:
Ich dachte, man könnte die Menge $$G(x) := \{ y \in G \ | \ \text{es existiert ein Weg von \(x\) nach \(y\) in \(G\)}\}$$ betrachten und dann zeigen, dass sie offen und abgeschlossen ist. Was hält ihr davon, oder genauer gesagt, wie würdet ihr die Offen- und Abgeschlossenheit zeigen?