Aufgabe:
Sei \( H \) die Untergruppe von \( G=\mathrm{GL}_{2}(\mathbb{R}) \), die durch
\( A=\left(\begin{array}{ll} 2 & 3 \\ 5 & 6 \end{array}\right) \)
erzeugt wird. Zeige, dass der Zentralisator von \( H \) gleich dem Normalisator von \( H \) ist (d.h. \( Z_{G}(H)=N_{G}(H) \) gilt).
Problem/Ansatz:
1. Zentralisator von \( H \) in \( G \) :
Der Zentralisator \( Z_{G}(H) \) ist die Menge aller Elemente \( g \in G \), die jedes Element \( h \in H \) kommutieren lassen, d.h., \( g h=h g \) für alle \( h \in H \).
2. Normalisator von \( H \) in \( G \) :
Der Normalisator \( N_{G}(H) \) ist die Menge aller Elemente \( g \in G \), für die gilt \( g H g^{-1}=H \). Das bedeutet, dass \( g \) eine Konjugation auf \( H \) darstellt und \( H \) sich unter dieser Konjugation nicht ändert.
Wenn ich die Thematik richtig verstehe müsste ich also folgendes zeigen:
Zunächst zeigt man \( Z_{G}(H) \subseteq N_{G}(H) \) :
Sei \( g \in Z_{G}(H) \), d.h., \( g h=h g \) für alle \( h \in H \). Man will zeigen, dass \( g H g^{-1}= \) \( H \).
Da \( H=\langle A\rangle \), können wir schreiben: \( h=A^{n} \) für ein \( n \in \mathbb{Z} \) und prüfen \( g A g^{-1} \) :
\( g A g^{-1}=g\left(\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right) g^{-1}=( \) unter Verwendung von \( g h=h g)= \) \( \left(\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right)=A \)
Da \( g A g^{-1}=A \) für alle \( h \in H \), folgt \( g H g^{-1}=H \), und somit ist \( g \in N_{G}(H) \).
\( N_{G}(H) \subseteq Z_{G}(H) \) :
Sei \( g \in N_{G}(H) \), d.h., \( g H g^{-1}=H \). Man zeigt, dass \( g h=h g \) für alle \( h \in \) \( H \).
Da \( H=\langle A\rangle \), gilt \( h=A^{n} \) für ein \( n \in \mathbb{Z} \).
Dann ist \( g h g^{-1}=A^{n} \) für alle \( n \in \mathbb{Z} \). Das bedeutet, dass \( g h=h g \) für alle \( h \in H \), da \( g \) mit jedem Element in \( H \) vertauscht werden kann. Somit folgt auch in diesem Fall, dass \( g \in Z_{G}(H) \).
Stimmt das soweit bzw. habe ich was übersehen? Damit müsste dann doch die Gleichheit folgen??