zuvor habe ich die erste Ableitung der Funktion bestimmt:
f(x) = (x2 - 2x - 3) / (x-2)
Diese lautet -> f ' (x) = (x^2-4x+7)/(x-2)^2
Ich habe versucht die zweite Ableitung mittels der Qutientenregel zu berechnen:
$$f'(x)\quad =\quad \frac { x²\quad -\quad 4x\quad +\quad 7 }{ { (x-2) }^{ 2 } } \\ v\quad =\quad x²\quad -\quad 4x\quad +\quad 7,\quad v'\quad =\quad 2x\quad -\quad 4\\ u\quad =\quad (x-2)²\quad \quad \quad \quad \quad \quad \quad u'\quad =\quad 2*(x-2)\\ \\ f''(x)\quad =\quad \frac { v'*u\quad -\quad v*u' }{ u² } \quad =>\quad \frac { (2x-4)*(x-2)²\quad -\quad (x²-4x+7)*2*(x-2) }{ { (x-2) }^{ 4 } } =>\\ \frac { (2x-4)*(x-2)²\quad -\quad (x²-4x+7)*2 }{ { (x-2) }^{ 3 } } =>\quad \frac { (2x-4)*(x²-4x+4)\quad -\quad (x²-4x+7)*2 }{ { (x-2) }^{ 3 } } =>\\ \frac { 2x³-8x²+8x-4x²+16x-16\quad -\quad (2x²-8x+14) }{ { (x-2) }^{ 3 } } =>\quad \frac { 2x³-8x²+8x-4x²+16x-16\quad -\quad 2x²+8x-14 }{ { (x-2) }^{ 3 } } =>\\ \frac { 2x³-14x²+32x-30 }{ { (x-2) }^{ 3 } }$$
Das Problem: Ich weiss, dass die richtige Ableitung so lauten müsste:
$$f''(x) = -\frac{6}{(x-2)^3}$$
Was habe ich wohl falsch gemacht?