Du wirst sicher keine zufriedenstellenden Antworten bekommen wenn du einfach ein Bündel Aufgaben hier hereinstellst ohne zu sagen wo genau deine Schwierigkeiten liegen. Ich habe daher einfach nur mal die Ableitung gebildet.
Die Aufgaben sind ein Misch aus den grundlegenden Ableitungsregeln wie Potenzregel, Kettenregel, Produktregel, Quotientenregel und Kettenregel.
f(x) = 5·x^3/(4·x^4 + 3·x^2 + 1)
f'(x) = - 5·x^2·(4·x^4 - 3·x^2 - 3)/(4·x^4 + 3·x^2 + 1)^2
f(x) = (SIN(x) + 1)·e^x
f'(x) = e^x·(COS(x) + SIN(x) + 1)
f(x) = √(2·x^3 + x - 1)
f'(x) = (6·x^2 + 1)/(2·√(2·x^3 + x - 1))
f(x) = x·LN(e^{2·x} + 5)
f'(x) = (e^{2·x}·(LN(e^{2·x} + 5) + 2·x) + 5·LN(e^{2·x} + 5))/(e^{2·x} + 5)
f(x) = COS(x)^2 - SIN(3·x)
f'(x) = - 3·COS(3·x) - 2·SIN(x)·COS(x)
f(x) = √(x^5)/(3^x + 6)
f'(x) = x^{3/2}·(30 - 3^x·(2·x·LN(3) - 5))/(2·(3^x + 6)^2)
f(x) = LN(3·x - 5·x^2)/LN(7)
f'(x) = (10·x - 3)/(x·(5·x - 3)·LN(7))