Aufgabe:
Sei \( G=\mathbb{Z} / 30 \mathbb{Z} \) und \( K=\mathbb{Z} / 10 \mathbb{Z} \) bzw. \( H=\mathbb{Z} / 2 \mathbb{Z} \). Verifiziere den ersten und zweiten Isomorphiesatz anhand dieser Gruppen.
Problem/Ansatz:
Für den ersten Isomorphiesatz bin ich folgendermaßen vorgegangen:
\( \begin{array}{l}G / K=\{0+10 \mathbb{Z}, 1+10 \mathbb{Z}, 2+10 \mathbb{Z}, \ldots, 9+10 \mathbb{Z}\} \\ H / K=\{0+10 \mathbb{Z}, 1+10 \mathbb{Z}\}\end{array} \)
Dann habe ich die Elemente von \( G / K \) modulo \( H / K \) betrachtet, womit \( (G / K) /(H / K) \) aus zwei Äquivalenzklassen besteht, nämlich \( \{0+10 \mathbb{Z}\} \) und \( \{1+10 \mathbb{Z}\} \). Diese können als Repräsentanten für die Faktoren \( 0+ \) \( 15 \mathbb{Z} \) und \( 1+15 \mathbb{Z} \) in \( \mathbb{Z} / 15 \mathbb{Z} \) angesehen werden.
Somit ist \( (G / K) /(H / K) \) isomorph zu \( \mathbb{Z} / 15 \mathbb{Z} \).
Beim zweiten Isomorphiesatz hätte ich mir dann folgendes gedacht:
\( H \cap K=\{0+ \) \( 30 \mathbb{Z}, 5+30 \mathbb{Z}\} \) und überprüfen, ob \( K /(H \cap K) \simeq H K / H \) ein Isomorphismus ist:
\( K /(H \cap K)=\{x+(H \cap K) \mid x \in K\} \)
Für \( K=\mathbb{Z} / 10 \mathbb{Z} \) und \( H \cap K=\{0+30 \mathbb{Z}, 5+30 \mathbb{Z}\} \), ergibt sich:
\( \begin{array}{l} K /(H \cap K)=\{0+10 \mathbb{Z}+(H \cap K), 1+10 \mathbb{Z}+(H \cap K), 2+10 \mathbb{Z}+(H \cap \\ K), \ldots, 9+10 \mathbb{Z}+(H \cap K)\} \end{array} \)
\( H K=\{0+30 \mathbb{Z}, 1+30 \mathbb{Z}, 2+30 \mathbb{Z}, \ldots, 29+30 \mathbb{Z}\} \)
\( H K / H=\{0+30 \mathbb{Z}+H, 1+30 \mathbb{Z}+H\} \)
Also ist auch \( H K / H=\{0+10 \mathbb{Z}, 5+10 \mathbb{Z}\} \).
Somit sind \( K /(H \cap K) \) und \( H K / H \) isomorphe Gruppen, da sie dieselben Elemente in unterschiedlicher Repräsentation enthalten, was den zweiten Isomorphiesatz für die gegebenen Gruppen bestätigt.