Problem: Ist das so richtig? Ist die Priorität immer Mal in Klammer, Addition in Klammer und anschließend alles außerhalb?
Text erkannt:
\( g e g: f: \mathbb{R}^{3 \times 2} \rightarrow \mathbb{R}^{3 \times 2} \)
\( \begin{aligned} f(x) & :=\left(2 \cdot x+\left(\begin{array}{rr} -2 & -3 \\ -1 & -3 \\ -1 & -2 \end{array}\right)\right) \cdot\left(\begin{array}{rr} -3 & 1 \\ 3 & 4 \end{array}\right) \\ A & :=\left(\begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 2 & 3 \end{array}\right) \end{aligned} \)
ges: \( f(A) \)
Reci
\( \begin{aligned} f(A) & 2 \cdot\left(\begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 2 & 3 \end{array}\right)=\left(\begin{array}{cc} 4 & 2 \\ -4 & -2 \\ 4 & 6 \end{array}\right)+\left(\begin{array}{cc} -2 & -3 \\ -1 & -3 \\ -1 & -2 \end{array}\right) \\ & =\left(\begin{array}{cc} 2 & -1 \\ -5 & -5 \\ 3 & 4 \end{array}\right) \cdot\left(\begin{array}{cc} -3 & 1 \\ 3 & 4 \end{array}\right) \\ = & \left(\begin{array}{cc} 2 \cdot(-3)+(-1) \cdot 3 & 2 \cdot 1+(-1) \cdot 4 \\ -5 \cdot(-3)+(-5) \cdot 3 & -5 \cdot 1+(-5) \cdot 4 \\ 3 \cdot(-3)+4 \cdot 3 & 3 \cdot 1+4 \cdot 4 \end{array}\right) \\ & =\left(\begin{array}{cc} -9 & -2 \\ 0 & -25 \end{array}\right) \end{aligned} \)
Text erkannt:
\( g e g: f: \mathbb{R}^{3 \times 2} \rightarrow \mathbb{R}^{3 \times 2} \)
\( \begin{aligned} f(x) & :=\left(2 \cdot x+\left(\begin{array}{rr} -2 & -3 \\ -1 & -3 \\ -1 & -2 \end{array}\right)\right) \cdot\left(\begin{array}{rr} -3 & 1 \\ 3 & 4 \end{array}\right) \\ A & :=\left(\begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 2 & 3 \end{array}\right) \end{aligned} \)
ges: \( f(A) \)
Reci
\( \begin{aligned} f(A) & 2 \cdot\left(\begin{array}{cc} 2 & 1 \\ -2 & -1 \\ 2 & 3 \end{array}\right)=\left(\begin{array}{cc} 4 & 2 \\ -4 & -2 \\ 4 & 6 \end{array}\right)+\left(\begin{array}{cc} -2 & -3 \\ -1 & -3 \\ -1 & -2 \end{array}\right) \\ & =\left(\begin{array}{cc} 2 & -1 \\ -5 & -5 \\ 3 & 4 \end{array}\right) \cdot\left(\begin{array}{cc} -3 & 1 \\ 3 & 4 \end{array}\right) \\ = & \left(\begin{array}{cc} 2 \cdot(-3)+(-1) \cdot 3 & 2 \cdot 1+(-1) \cdot 4 \\ -5 \cdot(-3)+(-5) \cdot 3 & -5 \cdot 1+(-5) \cdot 4 \\ 3 \cdot(-3)+4 \cdot 3 & 3 \cdot 1+4 \cdot 4 \end{array}\right) \\ & =\left(\begin{array}{cc} -9 & -2 \\ 0 & -25 \end{array}\right) \end{aligned} \)