\( f(x)=\frac{x^{2}+2 x+1}{x^{2}} \)
\( f'(x)=\frac{(2x+2 )\cdot x^2-(x^2+2x+1)\cdot 2x }{x^{4}} \) Intern kürzen:
\( f'(x)=\frac{(2x+2 )\cdot x-(x^2+2x+1)\cdot 2 }{x^{3}} \)
\( f'(x)=\frac{(2x^2+2x )-(2x^2+4x+2) }{x^{3}} \)
\( f'(x)=\frac{2x^2+2x -2x^2-4x-2 }{x^{3}} \)
\( f'(x)=\frac{-2x -2 }{x^{3}}=-\frac{2x +2 }{x^{3}}\)
Nebenbei:
\( f(x)=\frac{x^{2}+2 x+1}{x^{2}} =\frac{(x+1)^2}{x^{2}}\)