1)
f(x) = SIN((x^2 + b)^(1/2))
Ableitung mittels Kettenregel
f'(x) = COS((x^2 + b)^(1/2)) * [(x^2 + b)^(1/2)]'
f'(x) = COS((x^2 + b)^(1/2)) * 1/2 * (x^2 + b)^(- 1/2) * [x^2 + b]'
f'(x) = COS((x^2 + b)^(1/2)) * 1/2 * (x^2 + b)^(- 1/2) * 2 * x
f'(x) = COS((x^2 + b)^(1/2)) * 1/2 * (x^2 + b)^(- 1/2) * 2 * x
f'(x) = x·COS(√(x^2 + b)) / √(x^2 + b)
2)
f(t) = COS((a + pi)·t)
f'(x) = - SIN((a + pi)·t) * [(a + pi)·t]'
f'(x) = - SIN((a + pi)·t) * (a + pi)
f'(x) = - (a + pi) * SIN((a + pi)·t)