Aufgabe:
Sei die Matrix A ∈ K^N×N schiefsymmetrisch, also A = −A⊤.
a) Zeigen Sie im Fall K = R die Implikation
N ungerade ⇒ A singulär.
Hinweis: Benutzen Sie die Determinantenfunktion.
b) Geben Sie einen Körper an, für welche die Implikation oben falsch ist. Begründen Sie kurz.
Problem/Ansatz:
Die a) hab ich bereits gelöst, aber ich komm in Gottes Namen nicht auf eine Lösung für die b)... ganze Zahlen, rationale Zahlen, komplexe Zahlen, Restklassenkörper, et cetera... Die Determinante ist doch bei schiefsymmetrischen Matritzen mit N ungerade zwangsweise immer 0, dachte ich... dementsprechend kann die Matrix doch dann nur singulär sein. Oder übersehe ich etwas?