0 Daumen
671 Aufrufe

Ein Basketballs ist Parabellförmig  mit der Funktion fa(x)= -ax2+3x-1,5

Üblicherweise hängt ein Basketballkorb 3,05m in der höhe.


Max steht im Punkt S(1,5/2,25) Ermitteln sie den passenden Parameter a


Muss ich als Y die 3,05 einsetzen und als x 1,5 und dann nach a auflösen?

Avatar von

Die Aufgabe ergibt so vorne und hinten keinen Sinn. Bitte im original wiedergeben. Was beschreibt die Funktion, welche Bedeutung hat x? Schwebt Max in der Luft, wenn die x-Achse der Boden ist?

Ein Basketballs ist Parabellförmig

Nein. Die sind kugelrund.

Offenbar wird der Ball beim einen roten Punkt S geworfen und landet beim anderen roten Punkt im Korb. Aber Du solltest in der Lage sein, wiederzugeben wie die Aufgabe lautet. Wie lautet die Aufgabe?

blob.png

1 Antwort

0 Daumen
 
Beste Antwort

Max wirft den Basketball im Punk S ab:

f(1.5) = - a·1.5^2 + 3·1.5 - 1.5 = 2.25 --> a = 1/3

Avatar von 488 k 🚀

Muss a nicht negativ sein?

a muss nicht negativ sein, weil in deiner Gleichung der Faktor vor x² nicht a, sondern -a ist.

Die Funktionsgleichung lautet dann:

f(x) =-1/3x2+3x-1,5 oder

@abakus

Die Funktionsgleichung lautet dann:

f(x) =-1/3x2+3x-1,5 oder

Ja.

f(x) = - 1/3·x^2 + 3·x - 1.5

oder in der Scheitelpunktform

f(x) = - 1/3·(x - 4.5)^2 + 5.25

Bestimmen Sie den Parameter a sodass der Ball seine maximale Höhe 2,5m entfernt (Abstand auf der x Ache) annimmt.


Weißt du was man da machen muss?

Ist das jetzt ein anderer Aufgabenteil? Gebe doch einfach die vollständige Aufgabe an. Aktuell ist immer noch von einem parabelförmigen Ball die Rede.

Die x-Koordinate des Scheitelpunktes für die Funktion

f(x) = a·x^2 + b·x + c

befindet sich immer bei

Sx = - b/(2·a)

Setzen wir also ein und lösen nach a auf

Sx = - 3/(2·(-a)) = 2.5 --> a = 3/5 = 0.6

Also lautet die Funktion

f(x) = -0.6·x^2 + 3·x - 1.5

oder in der Scheitelpunktform

f(x) = -0.6·(x - 2.5)^2 + 2.25

@Mathecoach kannst diesen kommentar löschen hat sich geklärt Danke

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community