a) Beweisen Sie die folgende Umkehrung der Sätze 18.5 und 18.6 (Tangenten- bzw. Sekantensatz) aus der Vorlesung: Seien \( h \) und \( k \) zwei verschiedene und nicht entgegengesetzte Strahlen in einem Punkt \( O \), und seien \( A, B \in h \backslash\{O\} \) und \( C, D \in k \backslash\{O\} \) Punkte mit \( A \neq B \). Ist \( |O A| \cdot|O B|=|O C| \cdot|O D| \), so liegen \( A, B, C, D \) alle auf einem Kreis \( K \), und in diesem Fall ist \( k \) genau dann eine Tangente, wenn \( C=D \).
Im Rest der Aufgabe seien zwei Kreise \( K \) und \( L \) gegeben, die sich in genau einem Punkt \( P \) schneiden/berühren und eine gemeinsame Tangente \( t \) durch \( P \) haben. Seien \( A, B \in K \backslash\{P\} \) und \( C, D \in L \backslash\{P\} \) vier verschiedene Punkte. Beweisen Sie:
b) Liegen \( A, B, C, D \) alle auf einem Kreis, dann haben die Tangente \( t \) und die Sekanten \( g:=G(A, B) \) und \( h:=G(C, D) \) entweder einen gemeinsamen Schnittpunkt oder sind alle zueinander parallel.
Hinweis: Falls ein Schnittpunkt \( O \in g \cap h \) existiert, zeigen Sie, dass \( G(O, P) \) die gemeinsame Tangente an \( K \) und \( L \) ist. Im Fall, dass \( g \) und \( h \) parallel sind, könnte Aufgabe 9.1 hilfreich sein.
c) Liegen \( A, B, C, D \) nicht alle auf einer Geraden, dann gilt auch die Umkehrung der Aussage in Teilaufgabe (b).