Aloha :)
zu a) Bei der Matrix fällt sofort auf$$C=\left(\begin{array}{rrr}2 & -4 & -4\\-4 & 2 & -4\\-4 & -4 & 2\end{array}\right)$$dass die Summe der Einträge in jeder Zeile gleich \((-6)\) ist. Daher ist \((\color{blue}\lambda_1=-6)\) ein Eigenwert und der zugehörige Eigenvektor ist \(\color{blue}\vec v_1=(1;1;1)^T\), denn genau dieser Vektor sorgt dafür, dass alle Elmente einer Zeile addiert werden:$$\left(\begin{array}{rrr}2 & -4 & -4\\-4 & 2 & -4\\-4 & -4 & 2\end{array}\right)\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}2-4-4\\-4+2-4\\-4-4+2\end{pmatrix}=\begin{pmatrix}-6\\-6\\-6\end{pmatrix}=\underbrace{(-6)}_{=\lambda_1}\cdot\underbrace{\begin{pmatrix}1\\1\\1\end{pmatrix}}_{=\vec v_1}$$
Die Determinante einer Matrix ist gleich dem Produkt der Eigenwerte:$$\lambda_1\cdot\lambda_2\cdot\lambda_3=\left|\begin{array}{rrr}2 & -4 & -4\\-4 & 2 & -4\\-4 & -4 & 2\end{array}\right|=\left|\begin{array}{rrr}\pink2 & \pink{-4} & \pink{-4}\\-4+2\cdot\pink{2} & 2+2\cdot\pink{(-4)} & -4+2\cdot\pink{(-4)}\\-4+2\cdot\pink2 & -4+2\cdot\pink{(-4)} & 2+2\cdot\pink{(-4)}\end{array}\right|$$$$\phantom{\lambda_1\cdot\lambda_2\cdot\lambda_3}=\left|\begin{array}{rrr}2 & -4 & -4\\0 & -6 & -12\\0 & -12 & -6\end{array}\right|=2\cdot(36-144)=-216$$Die Summe der Hauptdiagonal-Elemente einer Matrix ist gleich der Summe Eigenwerte:$$\lambda_1+\lambda_2+\lambda_3=2+2+2=6$$Da wir schon \(\lambda_1=-6\) kennen, folgt für die beiden verbliebenen Eigenwerte:$$\lambda_2\cdot\lambda_3=36\quad;\quad\lambda_2+\lambda_3=12\quad\implies\quad\color{blue}\lambda_2=\lambda_3=6$$
Die Eigenvektoren zu dem doppelten Eigenwert \(\lambda_2=\lambda_3=6\) finden wir durch Lösen des homogenen Gleichungssystems$$\begin{array}{rrr|c|l}x_1 & x_2 & x_3 & = &\text{Aktion}\\\hline2-\lambda & -4 & -4 & 0 &\lambda=6\text{ einsetzen}\\-4 & 2-\lambda & -4 & 0 &\lambda=6\text{ einsetzen}\\-4 & -4 & 2-\lambda & 0 &\lambda=6\text{ einsetzen}\\\hline-4 & -4 & -4 & 0 &\div(-4)\\-4 & -4 & -4 & 0 &-\text{Zeile 1}\\-4 & -4 & -4 & 0 &-\text{Zeile 1}\\\hline 1 & 1 & 1 & 0 & \Rightarrow x_1+x_2+x_3=0\\0 & 0 & 0 & 0 & \checkmark\\0 & 0 & 0 & 0 & \checkmark\end{array}$$
Wir erhalten eine Bedinungsgleichung, die alle Lösungen erfüllen müssen. Diese stellen wir nach einer Variablen um$$x_1=-x_2-x_3$$und schreiben damit alle Lösungen hin:$$\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}-x_2-x_3\\x_2\\x_3\end{pmatrix}=x_2\cdot{\color{blue}\underbrace{\begin{pmatrix}-1\\1\\0\end{pmatrix}}_{=\vec v_2}}+x_3\cdot{\color{blue}\underbrace{\begin{pmatrix}-1\\0\\1\end{pmatrix}}_{=\vec v_3}}$$
Die Lösungen sind können aus zwei Basisvektoren kombiniert werden, sodass wir zwei Eigenvektoren \(\vec v_2\) und \(\vec v_3\) zum doppelten Eigenwert \(\lambda_2=\lambda_3=6\) gefunden haben.
Beachte, dass die Eigenvektoren nicht eindeutig sind. Wir hätten die Bedingungsgleichung \((x_1+x_2+x_3=0)\) ja auch nach einer anderen Komponente als \(x_1\) umstellen können.
zu b) Eine selbstadjungierte Abbildung$$A=\left(\begin{array}{rr}a & b\\b & c\end{array}\right)$$soll \(\binom{-1}{3}\) auf \(\binom{3}{-9}\) abbilden. Dazu muss sie den Eigenwert \((\lambda_1=-3)\) haben:$$A\cdot\binom{-1}{3}=\binom{3}{-9}=(-3)\cdot\binom{-1}{3}$$Wenn nun zusätzlich \(\lambda_2=2\) ein Eingenwert sein soll, muss gelten:$$\operatorname{Sp}(A)=\green{a+c=}\lambda_1+\lambda_2\green{=-1}\quad;\quad \operatorname{det}(A)=\red{ac-b^2}=\lambda_1\cdot\lambda_2\red{=-6}$$Zusätzlich muss der Funktionswert "passen":$$\binom{3}{-9}=A\cdot\binom{-1}{3}=\left(\begin{array}{rr}a & b\\b & c\end{array}\right)\binom{-1}{3}=\binom{-a+3b}{-b+3c}\implies$$$$\green{-a+3b=3}\quad;\quad\green{-b+3c=-9}$$
Aus den 3 grünen Bedingungen folgt: \(\quad a=\frac{3}{2}\quad;\quad b=\frac{3}{2}\quad;\quad c=-\frac{5}{2}\)
Diese 3 Werte erfüllen auch die rote Bedingung, wie man durch Einsetzen schnell nachprüft. Die gesuchte Abbildungsmatrix lautet daher:$$A=\left(\begin{array}{rr}\frac32 & \frac32\\[1ex]\frac32 & -\frac52\end{array}\right)$$