Aufgabe: Bestimmen sie eine Basis \( \mathcal{C}=\left(c_{0}, c_{1}, c_{2}\right) \) von \( P_{2} \), so dass \( { }_{C} F^{\mathcal{B}} \) die Einheitsmatrix ist. Benutzen Sie die Basis-Eigenschaft von \( \mathcal{B} \) um zu zeigen, dass auch \( \mathcal{C} \) eine Basis ist.
Problem/Ansatz:
Text erkannt:
\( \left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right) \)
B habe ich schonmal( wurde in einer anderen Aufgabe gezeigt)