Text erkannt:
6. Es sei \( \Omega=\mathbb{R} \), und \( \mathcal{A} \subset 2^{\Omega} \) sei das System aller höchstens abzählbaren Teilmengen von \( \Omega \). Ist \( \mathcal{A} \) ein Semiring, ein Ring, ein Sigmaring, eine Algebra, eine Sigmaalgebra? (wenn die Antwort "nein" ist, geben Sie an, welche Eigenschaften erfüllt sind und welche nicht).
Hallo, weiß jemand wie man bei solchen Beispielen am besten vorgeht? Mir fehlt der Ansatz