\( (1+i) z^{2}+(6+2 i) z+6-2 i=0 |:(1+i)\)
\(  z^{2}+\frac{6+2 i}{1+i} z=\frac{2i-6}{1+i}=\frac{(2i-6)(1-i)}{(1+i)(1-i)}=\frac{8i-4}{2}\)
\(  z^{2}+\frac{6+2 i}{1+i} z+(\frac{3+i}{1+i})^{2}=4i-2+(\frac{3+i}{1+i})^{2}\)
\(  (z+\frac{3+i}{1+i})^{2}=4i-2+(\frac{3+i}{1+i})^{2}\)
Einschub:
\(  \frac{3+i}{1+i}= \frac{(3+i)(1-i)}{(1+i)(1-i)}=2-i\)
\(  [z+(2-i)]^{2}=4i-2+(2-i)^{2}=1  |  ±\sqrt{~~}\)
1.)
\(  z+(2-i)=1  \)
\(  z_1=-1+i  \)
2.)
\(  z+(2-i)=-1  \)
\(  z_2=-3+i  \)