Aufgabe: Sei ℚ4 als ℚ-Vektorraum zu betrachten und sei W der ℚ-Untervektorraum von ℚ4 definiert durch
W=Spanℚ({(1,-1,1,-1),(1,1,1,1)}). Betrachten Sie die Kongruenzklasse modulo W [(1,2,4,3)] ∈ ℚ4/W, sodass [(1,2,4,3)] gleich dem affinen Unterraum (1,2,4,3)+W von ℚ4 ist.
Bestimmen Sie ein lineares Gleichungssystem in den Unbekannten (x1,x2,x3,x4), dessen Lösungsmenge gleich [(1,2,4,3)] ist.