Aloha :)
Wir betrachten die beiden Vektoren \(\vec a=\begin{pmatrix}1\\c\\2\end{pmatrix}\) und \(\vec b=\begin{pmatrix}c+4\\-1\\2\end{pmatrix}\)
zu a) Zwei Vektoren sind genau dann kollinear, wenn sie bis auf einen Skalierungsfaktor \(s\) übereinstimmen. Wir schauen, was aus dieser Forderung resultiert:$$\vec a=s\cdot\vec b\implies\begin{pmatrix}1\\c\\2\end{pmatrix}=s\cdot\begin{pmatrix}c+4\\-1\\2\end{pmatrix}$$Die dritte Komponente ist in jedem der beiden Vektoren \(2\), also muss der Skalierungsfaktor \(s=1\) sein:$$\begin{pmatrix}1\\c\\2\end{pmatrix}=\begin{pmatrix}c+4\\-1\\2\end{pmatrix}$$Aus der zweiten Komponente lesen wir nun ab, dass \(c=-1\) sein muss:$$\begin{pmatrix}1\\\pink{-1}\\2\end{pmatrix}=\begin{pmatrix}\pink{-1}+4\\-1\\2\end{pmatrix}\implies\begin{pmatrix}1\\-1\\2\end{pmatrix}=\begin{pmatrix}3\\-1\\2\end{pmatrix}\text{ Widerspruch }1\ne3$$
Wir erhalten einen Widersprich in der ersten Koordinate.
Die beiden Vektoren sind also nicht kollinear.
zu b) Wir sollen \(c\) so bestimmen, dass die beiden Vektoren gleich lang sind:$$\left\|\vec a\right\|=\|\vec b\|\implies\left\|\vec a\right\|^2=\|\vec b\|^2\implies\left\|\begin{pmatrix}1\\c\\2\end{pmatrix}\right\|^2=\left\|\begin{pmatrix}c+4\\-1\\2\end{pmatrix}\right\|^2\implies$$$$1^2+c^2+2^2=(c+4)^2+(-1)^2+2^2\implies c^2+5=(c^2+8c+16)+5\implies$$$$0=8c+16\implies c=-2$$Für \(c=-2\) haben beide Vektoren die gleiche Länge.