Aufgabe:
Welche Punkte der Geraden g haben vom Punkt P den Abstand a?
g: 3x-4y=13, P(6|-5), a= \( \sqrt{50} \)
Problem/Ansatz:
Ich hätte aus dieser parameterfreien Form die Gleichung in Vektordarstellung mit Parameter (X = P + t * v) gemacht, dann kann ich aus den 2 Zeilen eine Gleichung für x und eine Gleichung für y machen. Ich brauch dann noch die Kreisgleichung, welche ich mit dem Punkt P und dem Abstand a erstellen kann. Da setze ich dann für x und für y ein und berechne mir t1 und t2, aber es kommt nicht das raus, was es dann braucht, um auf die beiden Punkte von g zu kommen. Bei den Beispielen davor habe ich g nach eine der Variablen umformen können und dann in die Kreisgleichung einsetzen können (ohne Bruch und Kommazahlen,...), die Beispiele danach funktionieren mit Geradengleichungen. Ich verstehe daher nicht, wieso ich bei diesem Beispiel scheitere... wäre für jede Hilfe dankbar, hab am Donnerstag Mathearbeit.