Da dein metrischer Raum \((X,d)\) als kompakt vorausgesetzt wurde, ist er auch separabel. Es existiert also eine abzählbare Menge \(D=\{\alpha_1,\alpha_2,\ldots\}\subseteq X\), die dicht in \(X\) ist.
Eine denkbare Abbildung wäre doch \(\Psi:X\to\ell^\infty\) gegeben durch \(\Psi(x)=(d(x,\alpha_n))_{n\in\mathbb{N}}\), also die übergebenen Informationen sind die Abstände von \(x\) zu jedem Punkt von \(D\), aufgefasst als Folge.
Rein intuitiv ist es doch einleuchtend: Wenn du die Abstände jedes Punkts von \(X\) zu jedem Punkt von \(D\) kennst, dann musst du die gesamte Metrik rekonstruieren können. Hast du nämlich zwei Punkte \(x,y\), dann kannst du dir eine Folge \(D\ni (d_1,d_2,\ldots )\stackrel{n\to\infty}{\longrightarrow}y\) nehmen, und weißt dann \(d(x,y)=\lim\limits_{n\to\infty}d(x,d_n)\). Die Informationen in \(\Psi\) müssen also ausreichen, um \(X\) korrekt abzubilden.
Soviel zum "Handwaving", auf zum Beweisen!
1. Wieso ist das eine wohldefinierte Abbildung in \(\ell^\infty\), i.e. wieso ist das eine beschränkte Folge?
2. Wieso ist diese Abbildung stetig?
3. Wieso ist das eine isometrische Einbettung?