Hallo!
Ausgangspunkt:
Wir hatten in Analysis die Topologie wie folgt eingeführt
Definition 1.3.4 Eine Topologie auf einer Menge \( X \) ist eine Menge \( \mathcal{T} \) von Teilmengen von \( X \), sodass die folgenden Eigenschaften gelten.
(i) \( \emptyset, X \in \mathcal{T} \).
(ii) Jede Vereinigung \( \bigcup_{i \in I} U_{i} \) von Elementen \( U_{i} \in \mathcal{T} \) ist wieder ein Element von \( \mathcal{T} \).
(iii) Wenn \( U_{1}, U_{2} \in \mathcal{T} \), dann ist \( U_{1} \cap U_{2} \in \mathcal{T} \).
Das Paar \( (X, \mathcal{T}) \) nennt man einen topologischen Raum. Die Elemente \( U \in \mathcal{T} \) heißen offenen Teilmengen von \( X \) (bezüglich der Topologie \( \mathcal{T} \) ).
Nun wurde aber auch gesagt, dass jede Metrik eine Topologie induziert:
Satz 1.3.6 Jede Metrik d auf einer Menge \( X \) induziert wie folgt eine Topologie \( \mathcal{T} \) auf \( X \). Für \( U \subset X \) definieren wir
\( U \in \mathcal{T} \quad: \Longleftrightarrow \forall x \in U \exists r>0: B_{r}(x) \subset U .\)
Frage:
Wieso bildet jede Metrik mit der Menge X eine Topologie, wenn X selber ja nicht zwangsläufig offen sein muss, so also laut der Definition der "neuen" Topologie gar kein Element in T ist? Resultat wäre ja, dass X dann gar keine Topologe wäre, da ja (i) nicht erfüllt wäre.
Vielen Dank im Voraus!
---
edit: Per Definition einer Kugel folgt ja, dass es solch eine für jeden Punkt in X gibt. In meiner Mitschrift hatte ich da nur irgendwie stehen, dass die Kugel alle Elemente aus \(\mathbb{R}\) und nicht nur aus \(X\) enthält.