Hier eine Klausurvorbereitung für das erste Halbjahr der 12. Klasse (Mathe-Leistungskurs).
Übung (Klausurvorbereitung)
1. Bestimmen Sie die Ableitungsfunktion von f.
a) \( f(x)=2 x^{2}+e^{x} \)
b) \( f(x)=-6 \cdot e^{x} \)
c) \( f(x)=e^{x^{3}} \)
d) \( f(x)=e^{-4 x} \)
e) \( f(x)=-2 \cdot e^{4 x} \)
f) \( f(x)=e^{3 x^{2}+x} \)
g) \( f(x)=x^{4} \cdot e^{x} \)
h) \( f(x)=(2+x) \cdot e^{x} \)
i) \( f(x)=\left(x^{2}+3 x\right) \cdot e^{x} \)
2. Führen Sie zur Funktion \( f \) eine Funktionsuntersuchung (Nullstellen; Schnittpunkt mit der y-Achse; Extrema und Verhalten im Unendlichen) durch. Skizzierten Sie den Graphen.
a) \( f(x)=2 x-e^{x} \)
b) \( f(x)=x+\frac{1}{2} e^{-x} \)
c) \( f(x)=5 x \cdot e^{x} \)
d) \( f(x)=3 \cdot e^{-x^{2}} \)
e) \( f(x)=x^{3} \cdot e^{-x} \)
3. Gegeben sei die Exponentialfunktion f durch inre Gleichung \( f(x)=e^{-0.5 x^{2}} \) Untersuchen Sie die Funktion auf Achsenschnittpunkte. Untersuchen Sie die Funktion auf Extrem - und Wendepunkte. Skizzieren Sie den Graphen von f für \( -3 \leq x \leq 3 \) Treffen Sie Aussagen zur Symmetrie und dem Verhalten im Unendlichen. Bestimmen Sie die Gleichung der Tangente t im Punkt \( P(1;e^{-0,5}) \)
4. Gegeben sei die Exponentialfunktion f durch ihre Gleichung \( f(x)=e^{x}-x-4 \)
Zeigen Sie, dass die Stellen \( x_{1}=1,75 \) und \( x_{2}=-3,98 \) annähernd Nullstellen von \( f \) sind. An welcher Stelle schneidet der Graph die y - Achse? Untersuchen Sie die Funktion auf Extrempunkte. Skizzieren Sie den Graphen von f für \( -5 \leq x \leq 2 \).
Zeigen Sie, dass \( F(x)=e^{x}-\frac{1}{2} x^{2}-4 x \) eine Stammfunktion von \( f \) ist. Berechnen Sie die Fläche, die vom Graphen und der \( x \) -Achse eingeschlossen wird.
(Nutzen Sie die Werte \( x_{1}=1,75 \) und \( x_{2}=-3,98 \) als Grenzen.)