Von einem Dreieck ABC sind gegeben:
a) \( \mathrm{b}=\sqrt{2}, \mathrm{c}=2, \gamma=45^{\circ} \Rightarrow \mathrm{A}= \) ?
b) \( \mathrm{c}=1.44 \mathrm{~m}, \beta=150^{\circ}, \mathrm{A}=3.15 \mathrm{~m}^{2} \Rightarrow \mathrm{r}=? \)
c) \( \mathrm{c}=16 \mathrm{~cm}, \alpha=\beta=39.7^{\circ} \Rightarrow \mathrm{w}_{\mathrm{a}}, \mathrm{w}_{\beta}, \mathrm{w}_{\mathrm{r}}=? \)
d) \( \alpha=\beta=47.3^{\circ}, \mathrm{w}_{\mathrm{a}}=25.3 \mathrm{~cm} \Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}= \) ?
e) \( c=6.84 \mathrm{~m}, a=100^{\circ}, w_{a}=4.00 m \Rightarrow \gamma=? \)
f) \( \quad a=7.00 \mathrm{~cm}, \beta=30^{\circ}, \mathrm{s}_{c}=5.00 \mathrm{~cm} \Rightarrow \mathrm{b}=? \)
g) \( a=3.5 \mathrm{~cm}, \mathrm{~h}_{\mathrm{b}}=2.5 \mathrm{~cm}, \mathrm{w}_{1}=1.5 \mathrm{~cm} \Rightarrow \alpha, \beta, \gamma=? \)
h) \( c=9.0 \mathrm{~cm}, \mathrm{~h}_{\mathrm{c}}=4.8 \mathrm{~cm}, \mathrm{~s}_{\mathrm{c}}=5.0 \mathrm{~cm} \Rightarrow \mathrm{a}, \mathrm{b}=? \)
i) \( \rho=3.0 \mathrm{~m}, \alpha=48^{\circ}, \beta=62^{\circ} \Rightarrow \mathrm{r}=? \)
j) \( a=110^{\circ}, \beta=50^{\circ}, A=17 \mathrm{~m}^{2} \Rightarrow \rho=? \)
Habe bis jetzt nur Dreiecke mit Winkel und Seitenlängen-Angaben berechnet.