Geht teilweise m. E: nur über Additionstheoreme: cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y)
a) 2cos(3x) = 2cos(2x + x) =2*[cos(2x)*cos(x) - sin(2x)*sin(x)] = 2*[cos({x + π/2} + {x - π/2})*cos(x) - sin(2x)*sin(x)]
-> 2*[(cos(x+π/2)*cos(x-π/2) - sin(x+π/2)*sin(x-π/2))*cos(x) - sin(2x)*sin(x)]
-> 2*[(cos(x+π/2)*sin(x) - sin(x+π/2)*sin(x-π/2))*cos(x) - sin(2x)*sin(x)]
-> 2*[((cos(x)*cos(π/2)-sin(x)*sin(π/2))*sin(x) - sin(x+π/2)*sin(x-π/2))*cos(x) - sin(2x)*sin(x)]
-> 2*[((cos(x)*0-sin(x)*1)*sin(x) - sin(x+π/2)*sin(x-π/2))*cos(x) - sin(2x)*sin(x)]
-> 2*[(-sin(x)*sin(x) - sin(x+π/2)*sin(x-π/2))*cos(x) - sin(2x)*sin(x)]
-> 2*[(-sin(x)*sin(x) - sin(x+π/2)*sin(x-π/2))*cos(x-π/2 + π/2) - sin(2x)*sin(x)]
-> 2*[(-sin2(x) - sin(x+π/2)*sin(x-π/2))*(cos(x-π/2)*cos(π/2) - sin(x-π/2)*sin(π/2)) - sin(2x)*sin(x)]
-> 2*[(-sin2(x) - sin(x+π/2)*sin(x-π/2))*(sin(x)*0 - sin(x-π/2)*1)) - sin(2x)*sin(x)]
-> 2*[(-sin2(x) - sin(x+π/2)*sin(x-π/2))*(- sin(x-π/2)) - sin(2x)*sin(x)] oder so ähnlich .-)
zu b) f(x)= -2cos(x-pi) = -2sin(x)
und c) analog zu a)