Hi,
man muss zwei Dinge zeigen. Wenn \( z_0 \) Nullstelle von p ist, dann auch \( \overline {z_0} \) und umgekehrt, wenn \( \overline {z_0} \) Nullstelle von p ist, dann auch \( z_0 \)
Das Polynom p(z) kann man schreiben als \( p(z)=\sum_{k=0}^na_kz^k \)
Sei nun \( p(z_0)=0 \) Es gilt \( 0=\overline {p(z_0)}=\overline { \sum_{k=0}^na_kz^k }=\sum_{k=0}^n \overline {a_kz_0^k}=\sum_{k=0}^na_k \overline{z_0} \) Also ist \( \overline z_0 \) eine Nullstelle von p. Hier muss man benutzten das \( \overline {a_k }=a_k \) gilt, weil \( a_k \in \mathbb R \)
Die andere Richtung geht genauso.